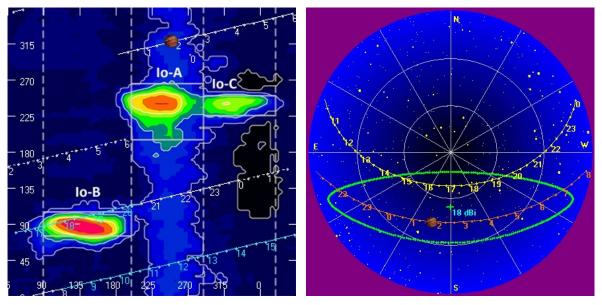


Date: 18 May 2017

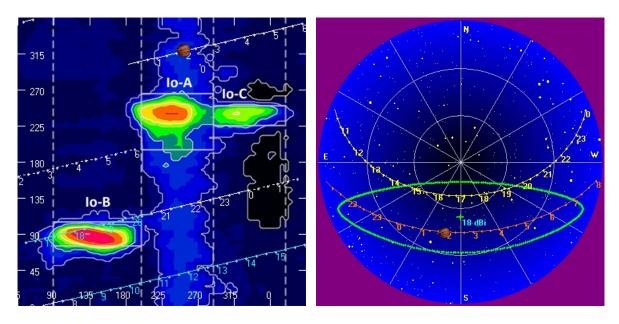
Object: Jupiter – Non-Io-A

Observer: Unattended

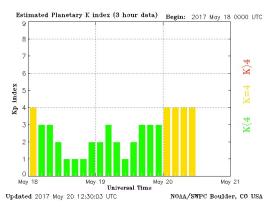
Start of pass:	0149 UT	Planetary K-index:	3
Jupiter Altitude (deg):	44.3	Jupiter Azimuth (deg):	165.6
Jupiter CML:	249.17	Jupiter Io Phase:	317.46
Jupiter RA (hr/min):	12:53	Jupiter Dec (hr/min):	-04:03
Hour Angle (hr/min):	-00:41	Polarization	RCP
Sun Altitude (deg):	-14.2	Sun Azimuth (deg):	311.6
Sun RA (hr/min):	03:33	Sun Dec (hr/min):	19:08


End of pass:	0156 UT		
Jupiter Altitude (deg):	44.6	Jupiter Azimuth (deg):	167.7
Jupiter CML:	252.8	Jupiter Io Phase	318.31
Hour Angle (hr/min):	-00:35		
Sun Altitude (deg):	-15.1	Sun Azimuth (deg):	312.8

Observations made using:


- 1. FSX-8S fed by the TFD array
 - a. 7.7 dB loss between TFD and Multicouplers.
 - b. Connect to array through HNRAO Multicoupler #1 and #2, port 2
 - i. HNRAO Multicoupler #1 TFD/LCP
 - ii. HNRAO Multicoupler #2 TFD/RCP
 - 1. Port 1 having 10 dB of gain, all other ports have 3 dB gain.
- 2. FSX-2 fed by the LWA array directly
 - a. LWA element configuration 90 degrees
- 3. JOVE 2 receiver fed by phased JOVE dipoles @ 13'
 - a. 12' 6" phase cable phased for 2016-17 season
 - b. Calibrated 19 April 2017
 - c. Connected to dipoles through HNRAO Multicoupler #3, port 1.
 - i. 3.165 dB loss between Multicoupler and dipoles.
- 4. Icom R75 receiver fed by experimental DDRR antenna directly.
 - a. Calibrated 19 April 2017
- 5. SDRPlay
 - a. RSP1 (2) and RSP2 (1)

HNRAO Observing Log 40.673181 N – 80.437885 W EN90sq



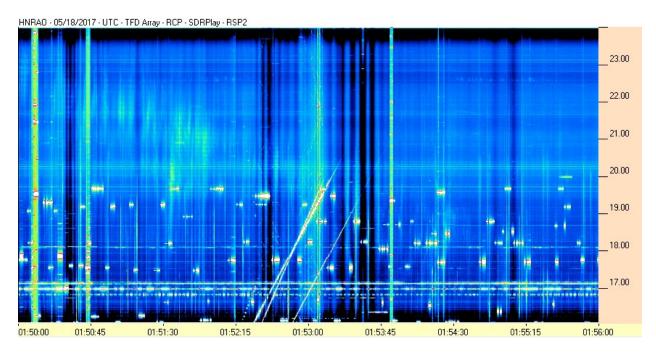
Beginning of Pass

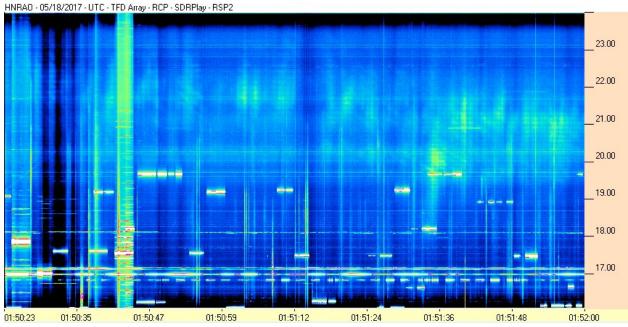
End of Pass

MODE	CML RANGE	Io RANGE	MAX F	POLAR	ARC	NOTES
Io-D	0-200	95-130	18	LH	Early	Also called "fourth source"
Io-B	(105 - 185)	(80-110)	39.5	RH	Early	Also called "early source"
non Io-B	80-200	0-360	38	RH	Early	Voyager info
Io-A	(200-270)	(205-260)	38	RH	Late	Also called "main source"
non-Io-A	(230-280)	0-360	38	RH	Late	
Io-C	(300-20)	(225-260)	36	RH&LH	Late	Also called "third source"
non-Io-C	300-360	0-360	32	RH&LH	Late	Voyager info

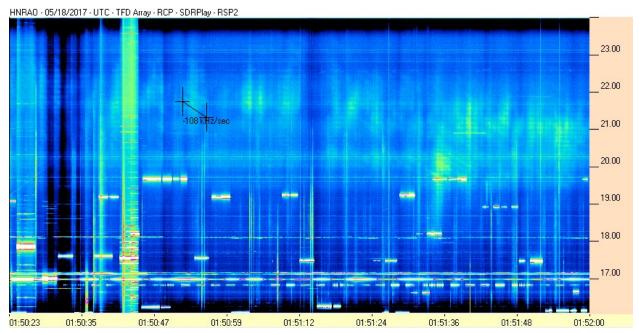
https://www.radiosky.com/jupmodes.html

Very little to note about this Non-Io-A storm. Lasting approximately 7 minutes. Negative drift L-bursts with negative drift modulation lanes. Only one modulation clear enough to measure at -108 kHz/sec drift rate.

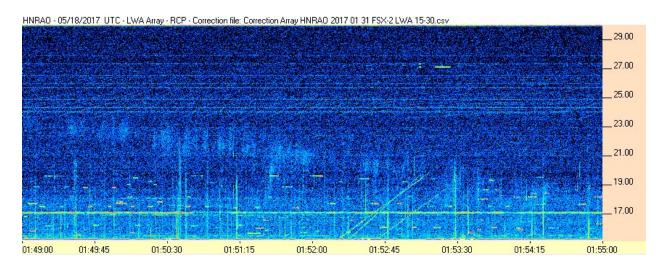

The SDRPlay RSP2/TFD pair, with its increased sensitivity, could resolve this event but the ionosphere was not quiet enough to see fine details even though Jupiter was near transit.

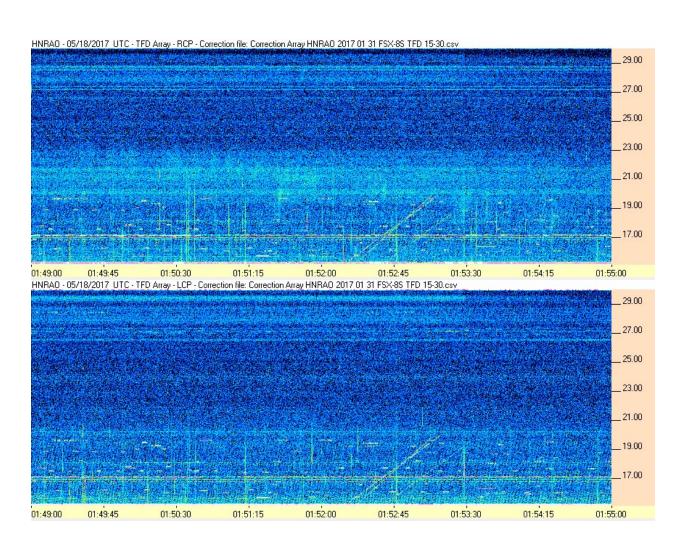

The FSX2/LWA spectrograph was able to resolve this storm, however, the FSX-8S/TFD pair saw it just slightly above galactic background.

The Radio JOVE/dipole pair was reconfigured to measure the galactic background at zenith and did not record anything.



SDRPlay RSP2/TFD Pair





FSX-2/LWA Pair

FSX-8S/TFD Pair

